GacS-dependent regulation of polyhydroxyalkanoate synthesis in Pseudomonas putida CA-3.
نویسندگان
چکیده
To date, limited reports are available on the regulatory systems exerting control over bacterial synthesis of the biodegradable polyester group known as polyhydroxyalkanoates (PHAs). In this study, we performed random mini-Tn5 mutagenesis of the Pseudomonas putida CA-3 genome and screened transconjugants on nitrogen-limited medium for reduced PHA accumulation phenotypes. Disruption of a GacS sensor kinase in one such mutant was found to eliminate medium-chain-length PHA production in Pseudomonas putida CA-3. Recombinant expression of wild-type gacS from a pBBRgacS vector fully restored PHA accumulation capacity in the mutant strain. PCR-based screening of the P. putida CA-3 genome identified gene homologues of the GacS/GacA-rsm small RNA (sRNA) regulatory cascade with 96% similarity to published P. putida genomes. However, reverse transcription-PCR (RT-PCR) analyses revealed active transcription of the rsmY and rsmZ sRNAs in gacS-disrupted P. putida CA-3, which is atypical of the commonly reported Gac/Rsm regulatory cascade. Quantitative real-time RT-PCR analyses of the phaC1 synthase responsible for polymer formation in P. putida CA-3 indicated no statistically significant difference in transcript levels between the wild-type and gacS-disrupted strains. Subsequently, SDS-PAGE protein analyses of these strains identified posttranscriptional control of phaC1 synthase as a key aspect in the regulation of PHA synthesis by P. putida CA-3.
منابع مشابه
Draft Genome Sequence of Pseudomonas putida CA-3, a Bacterium Capable of Styrene Degradation and Medium-Chain-Length Polyhydroxyalkanoate Synthesis
Pseudomonas putida strain CA-3 is an industrial bioreactor isolate capable of synthesizing biodegradable polyhydroxyalkanoate polymers via the metabolism of styrene and other unrelated carbon sources. The pathways involved are subject to regulation by global cellular processes. The draft genome sequence is 6,177,154 bp long and contains 5,608 predicted coding sequences.
متن کاملPolyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions.
Pseudomonas putida CA-3 accumulates polyphosphate (polyP) and medium-chain-length polyhydroxyalkanoate (mclPHA) concurrently under nitrogen limitation. Five other mclPHA-accumulating Pseudomonas strains are capable of simultaneous polyP and mclPHA biosynthesis. It appears that polyP is not the rate-limiting step for mclPHA accumulation in these Pseudomonas strains.
متن کاملFunctional metagenomics using Pseudomonas putida expands the known diversity of polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate copolymers
Functional metagenomics using Pseudomonas putida expands the known diversity of 1 polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate 2 copolymers 3 4 14 15. CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract 17 Bacterially produced biodegradable pol...
متن کاملGenetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
Pseudomonas putida CA-3 is capable of accumulating medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when growing on the toxic pollutant styrene as the sole source of carbon and energy. In this study, we report on the molecular characterization of the metabolic pathways involved in this novel bioconversion. With a mini-Tn5 random mutagenesis approach, acetyl-coenzyme A (CoA) was identified a...
متن کاملAnalysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.
Pseudomonas putida CA-3 is a styrene-degrading bacterium capable of accumulating medium-chain-length polyhydroxyalkanoate (mclPHA) when exposed to limiting concentrations of a nitrogen source in the growth medium. Using shotgun proteomics we analysed global proteome expression in P. putida CA-3 supplied with styrene as the sole carbon and energy source under N-limiting (condition permissive for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2013